
Chronological Advancement in Compiler Design:
A Review

Amit Verma1 and Nikita Bakshi2

Department of Computer Science and Engineering,
Chandigarh University, Mohali, India.

1amit.verma@cumail.in
2bakshinikita24@gmail.com

Abstract. Compiler is a set of instructions that translate the source code into binary
format usually known as object code. Compiler is used to convert a language read-
able in user domain into the tasks which is understood by the machine. For exam-
ple C++ compiler compiles program written in a language easily understandable by
human which compiles task that can be executed by a computer’s processor. In this
paper, we discuss about the computers and their evolution. Algorithms and tools are
used for compiler design. Further our study carrys a survey on key properties of
compiler courses in some universities.

Keywords: Computer, Compiler, Programming language, Memory Aware
Mapping, Automatic Parallelizing, Lemon.

1 Introduction

Computer is an electronic device which is competent of receiving information in a par-
ticular form and performing a set of instructions with predetermined but variable set of
instruction to produce a result in the form signals. Sequence of operations can be eas-
ily changed in computer so it can solve more than one kind of problem like logical
operations etc.

1.1 Evolution of Computers

1822: English mathematician Charles Babbage conceives of a steam-driven calculat-
ing machine that would be able to compute tables of numbers. The project, funded by
the English government, is a failure. More than a century later, however, the world’s
first computer was actually built. [15]

1890: Herman Hollerith designs a punch card system to calculate the 1880 census, accom-
plishing the task in just three years and saving the government $5 million. He establishes
a company that would ultimately become IBM (IBM was founded in 1911). [13]

1937: J.V. Atanasoff, a professor of physics and mathematics at Iowa State University,
attempts to build the first computer without gears, cams, belts or shafts. [14]

99 Research in Computing Science 103 (2015)pp. 99–109; rec. 2015-06-03; acc. 2015-06-20

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

1941: Atanasoff and his graduate student, Clifford Berry, design a computer that can
solve 29 equations simultaneously. This marks the first time a computer is able to store
information on its main memory. [15]

1943–1944: Two University of Pennsylvania professors—John Mauchly and J. Presper
Eckert—build the Electronic Numerical Integrator and Calculator (ENIAC).
Considered the grandfather of digital computers, it fills a 20 foot by 40 foot room and
has 18,000 vacuum tubes. [16]

1946: Mauchly and Presper leave the University of Pennsylvania and receive funding
from the Census Bureau to build the UNIVAC, the first commercial computer for busi-
ness and government applications. [16]

1953: Grace Hopper develops the first computer language, which eventually becomes
known as COBOL. Inventor Thomas Johnson Watson, of IBM CEO Thomas Johnson
Watson, conceives the IBM 701 EDPM to help the United Nations keep tabs on Korea
during the war. [15]

1954: The FORTRAN programming language came into existence.

1960–1962: In 1960, COBOL became an early high-level programming to be compiled
on different architectures. In 1962, the first self-hosting compiler was assigned for Lisp
by Tim Hart and Mike Levis at MIT. [15]

1980–1999: The term Wi-Fi becomes part of the computing language and users begin
connecting to the Internet without wires.

2000–2015: Apple unveils the iPad, changing the way consumers view media and
jumpstarting the dormant tablet computer segment.

1.2 Compiler

Compiler is a program that translates source code into object code. The compiler
derives its name from the way it works, looking at the entire piece of source code and
collecting and reorganizing the instructions. Thus, a compiler differs from an inter-
preter, which analyzes and executes each line of source code in succession, without
looking at the entire program. [17]

1.3 Phases of Compiler

A compiler efficiently generates object code by confirming code syntax. At run time, out-
put is formatted according to the rules of linker and assembler. A compiler consists of:

a. Lexical Analysis: Lexical analysis is used to remove irrelevant information from the
program source. Irrelevant information contains things like blanks and comments.
Besides eliminating irrelevant information, lexical analysis determines the lexical
tokens of the language.

b. Syntax Analysis: Syntax Analysis is responsible for looking syntax rules of the lan-
guage (often as a context-free grammar), and construction of an intermediate repre-
sentation of the language.

100

Amit Verma, Nikita Bakshi

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

c. Semantic Analysis: Semantic analysis takes the representation made from the analy-
sis of syntax and semantic rules apply for representation to ensure that the program
meets the requirements of semantic rules of the language.

d. Code Generation: This final stage of a typical compiler converts the inter-
mediate representation of program into an executable set of instructions. This
last stage is the only step in the compilation that is machine dependent. You can
also do optimization at this stage of compilation that makes the program more
efficient.

This paper is organized as follows: Section II provides the related work. In Section III,
we briefly discuss the algorithm for compiler design. Section IV presents the compiler
construction tools. Section V gives overview of the Compiler Project at Leading
Computer Science Universities. Finally, Section VI provides the conclusion of this
paper.

2 Related Work

Yunsik Son et al. [4] provided a brief overview on symbol table. Symbol table is
an essential module in compiler construction. It includes phases like lexical analysis,
syntax analysis, semantic analysis and code generation. In this paper, they deal with
reverse technique for the verification of the symbol table in objective C compiler.

Source Code

Lexical Analysis

Syntax Analysis

Semantic Analysis

Code Generation Executable Program

Assembly

Modified AST

Next Token Get Next Token

Abstract Syntax Tree

Fig. 1. Phases of Compiler.

101

Chronological Advancement in Compiler Design: A Review

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

They also discuss the design and implementation of a reverse translator that verifies
and analyses the symbol table designed during the development stage objective C
compiler. Furthermore, based on the symbol table verification, a correct code can be
generated by examining the use of identifiers and attribute in the code generation
step.

I. Budiselic et al. [5] discussed the experiences with the programming language
instruction over the last three years and tool based assignment used before and quanti-
tative differences in results. They also discuss the compiler design courses providing
an overview on compiler project at seven different computer science universities in
Europe and US. They also provide an overview on programming language translation
courses, organization of PTL courses and describe the evolution of programming from
its initial stage to its current design. Two important classifications of compiler design
project and courses are explained. They roughly divide compiler design into two
courses front end heavy and back end heavy.

Chengyong Wu et al. [6] presented an overview of the design of the main components
of ORC, especially new features in the code generator. The Open Research Compiler
(ORC) was jointly developed by the Intel Microprocessor Laboratory of Technology
and the Institute of Computer Technical Academy of Science of China. It has become
the leading open source compiler in processor family Itanium TM. ORC development
methodology which is important for achieving the objectives is discussed. Performance
comparison with other IPF compiler and a brief summary of research based on ORC
are also presented.

John S. Mallozzi et al. [7] talked about one semester course in compiler design pres-
ents difficulties to an instructor who want to assign a project in which object oriented
techniques are used. This paper describe a method that uses the tool developed by the
author to generate a parser that encourages an object-oriented approach, clearly related
code written by the student which automatically generate code with intended students
to increase understanding.

Miodrag Djukic et al. [8] described a technique in which significance of controlla-
bility and speed is placed upward the retarget ability and cycle-accuracy to provide
a better platform for software development. Many simulation instructional
approaches place the retarget ability and cycle precision as the key functions to facil-
itate the exploration and performance of architecture and also estimate early in the
development phase of hardware. The main idea of this work is to associate the sim-
ulator effort compiled with the development of the C and build target language com-
piler for the processor using knowledge related to compiler and reusing some
common software elements.

Mirko Viroli [3] provided a brief description about EGO compiler (Extract Generic
On-Demand). This is the result of a project developed in partnership with Sun
Microsystems in order to evaluate a smooth support for generic time function, which
does not require changes in the JVM or any other component of the Java Runtime
Environment. We conceive and develop solution which is a sophisticated translation

102

Amit Verma, Nikita Bakshi

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

based on the type style step also known as reification of type parameters, where the
type information is at runtime and automatically create as on per code and cached for
future use. The main aspects of development are presented, from the basic design to
implementation and deployment issues.

Johgheen Youn et al. [9] presented a new coding scheme and instructions based on the
dynamic implied addressing mode (DIAM) to solve the limited space coding and side
effects by trimming. Also introducing two versions of architectures to support our
approach is based on DIAM. They also suggest a generation of code algorithm to fully
utilize DIAM. In their work, architecture with DIAM exhibition shows code size
reduction up to 8% and 18% on average speed compared with the basic architecture
without DIAM.

Hankjin Lee et al. [10] provided a well established algorithm more over a methodol-
ogy that is used for detection of design patter. In this paper, reclassification of GoF pat-
tern takes place. Gang of Four (GoF) is known to be very useful for the detection of
projects with reverse engineering methods. He also proposed GoF pattern detection
technique. After that, evaluation of new technique is done and paper is concluded with
the pros and cons of new approach, and what other work is to be done in terms of future
research.

Ivan Keimek et al. [11] provided a brief description that reverse engineering is used in
many fields of IT every day like binary code patching, legacy compatibility, network
protocol analysis, malware analysis, rapid prototyping or in debugging. Despite its
widespread use, reverse engineering is not actively taught as part of computer courses.
This paper attempts to provide an overview of real life scenario of reverse engineering.
Analysis of skills, ways of thinking that can be developed by reverse engineering and
provides example that you can teach reverse engineering by resolution of practical
problems. They also focus on the importance of reverse engineering as a tool to turn
the self motivation in students and systematically build your logical thinking skills and
analytical skills.

Cristina Cifuentes et al. [12] presented different type of reverse engineering based on
level of code abstraction, which was used to reengineer assembly code, CASE code,
machine code and source code. In this paper they elaborate various type of reverse
engineering and protection for copyright software. Common uses of reverse engineer-
ing were explained. Comparative overview of the legal standing reverse engineering
are provided. They also propose the existing and future challenges of the global elec-
tronic community for the protection of digital works.

3 Algorithm for Compiler Designing Process

Compiler design and related set of classic algorithms provides a pretty flexible soft-
ware architecture that can be called “abstract machine”architecture. Sometimes using
this architecture and adapting it to a particular task can make design more transparent
and more easily debugged.

103

Chronological Advancement in Compiler Design: A Review

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

a. Memory Aware Mapping for Compiler
SOS: Set Operations to Schedule
QRO: Query Ready to Schedule Operations
G: Application DDG

Pseudo code for Memory Aware Mapping

The pseudo starts with DDG to represent the priority. DDG is initialized by setting
the minimum value of mobility. QRO queue takes ROP function which has a value of
mobility less than or equal to the value of variable p. After that do while loop schedule
each operation once at a time until it become empty. DDPs set the earliest clock cycle
at which operation Op can be schedule. The preprocessor returns Op where IDDPs
were executed. Subsequently, GetCost return choice variables. After that RTime is
incremented and the GetCost function is repeated until available Op are found. The
decision schedule time function analyze the mapping costs from choice variable and
select the most efficient operation.

b. Distributed Shared Memory Automatic Parallelizing Compiler
Ta : Target Array
PO : Parallelizing Loop
KO: Kernel Loop
DDM: Data Distributed Method
IKO : Intraprocedural Kernel Loop
iKo : Interprocedural Kernel Loop
FTC: First Touch Control

while (Resources_Cong (Choices));
Dscn = DecidesScheduleTime (Choices)
RsvResources (Decision)
Sch(Op)
SOS = SOS - Op

} while (QRO � �);
p = p+1

}
End

Begin
Priorities Assign (G);
p=Highest Priority // Minimum mobility
while (SOS � �)
{
QRO = queue ROP (p)
 do
 {
 Op = dequeue QRO
 (DDPs , RTime) = Predecessors (Op)
 (IDDPs) = Predecessors – R (Op)
 do
 {
Choice=GetCost(DDPS,IDDPs, RTime);

 RTime++
 }

104

Amit Verma, Nikita Bakshi

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Pseudo code for Distributed Shared Memory Automatic Parallelizing Compiler

In this pseudo code, we start with the detection of parallelizing loops and target
arrays. Parallelizing loop for each shape of data distribution is determined. Kernel loop
is distributed and data redistribution analysis is done. In the end, analysis of first touch
control for data redistribution and reference pattern.

c. Demand Driven to Detect Parallelism in Irregular Code of Compiler

Pseudo Code For Demand Driven to Detect Parallelism in Irregular Code

Begin
Case1:
Check SCC (X1,…….,Xn)
when dependence is found
SCC(Y1,…………,Ym) SCC(X1,………,Xn)
L start classification

if
SCC is already in stack
Return
SCC(X1,…….,Xn) SCC(Y1,……..,Ym)
else
B Generate Error
endif

Case2:
SCC(X1) trival component

inherit CLASSX1(e)
X1=e

if
SCC(X1,……..,Xn) non trival component
A CLASSXK (XK(SK)=eK)
Return classified component
else
SCC return unclassified
endif

End

Begin
Detect Po and Ta

For
DDM=Determination of the shape
Determination of the IKo

if
Ta Arg
return determination of iKO

else
no change

endif
end for DDM
Err check distribution
if

Code FTC
Analysis of data redistribution

else
B Analysis of reference pattern
Return B

end if
End

105

Chronological Advancement in Compiler Design: A Review

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

In this pseudo code, non classified component is pushed into stack and process
is started. If SCC is independent then its classification is found. Classification
process starts when SCC (Y1,………,Ym). It reaches a deadlock when mutually
dependent SCC exists in the loop. If dependence is found, stack is checked
before starting classification. If already in stack, dependence exists. In case 2
if stack belong to the same class then component inherit otherwise remains
unclassified.

4 Compiler Construction Tools

There are so many tools for compiler design; few of them are listed below [18] :

i. Lex & Yacc: Lex and Yacc are the most classic UNIX tools for the compiler
construction. Lex does tokenization which helps to create programs whose control
flow is handled by instances of regular expression in the input stream. Yacc pro-
vides a parsing tool to illustrate the input to a computer program. The Yac user spec-
ifies the grammar of the input with its code to be invoked as each structure in that
grammar is renowned. Yacc provides specification into a subroutine to process the
input.

ii. Lemon: The lemon program is an LALR parser generator. It takes a context free
grammar and converts it into a subroutine that will parse a file using that grammar.
Lemon is analogous to much more programs like “BISON” and “YACC”, but the
lemon is not companionable with either bison or yacc.

iii. GCC-RTL: RTL store text in a file as an interface between the language front end
and GNUCC. GNUCC was designed to use RTL internally only.

iv. ANTLR: ANother Tool for Language Recognition. It is a powerful parser generator
for processing, reading, executing, translating binary files or structure files. It’s widely
used to build tools, languages and frameworks.

v. ML-RISC: MLRISC is a customization optimization back-end written in Standard
ML and has been successfully retargeted to multiple architectures like PPC, Sparc,
Alpha, MIPS.

5 Overview of The Compiler Project at Leading Computer
Science Universities

In this section, we briefly summarize the compiler design courses and
accompanying programming assignments from some of the leading computer sci-
ence universities in the US and Europe. The specifics of each course are shown in
Table I.

106

Amit Verma, Nikita Bakshi

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Ta
bl

e
1.

 K
ey

 P
ro

pe
rti

es
 o

f C
om

pi
le

r C
ou

rs
es

 in
 S

om
e

C
om

pu
te

r S
ci

en
ce

 U
ni

ve
rs

iti
es

.

C
ou

rs
e

So
ur

ce
Ta

rg
et

Im
pl

em
en

ta
tio

n
Le

ct
ur

e
St

ud
en

t
Pr

oj
ec

t
U

ni
ve

rs
iti

es
na

m
e

La
ng

ua
ge

La
ng

ua
ge

La
ng

ua
ge

Fr
on

t e
nd

 %
To

ol
s

pe
r g

ro
up

Im
pa

ct

M
IT

6.
03

5
D

ec
af

x8
6-

64
Ja

va
10

A
N

TL
R

3–
4

60
C

om
pu

te
r

La
ng

ua
ge

En
gi

ne
er

in
g

C
M

U
15

-4
11

L1
-L

4
X

86
-6

4
SM

L,
 O

ca
m

l,
10

Le
xe

r a
nd

1–
2

70
C

om
pi

le
r

H
as

ke
ll,

 J
av

a
pa

rs
er

D
es

ig
n

an
d

ot
he

rs
ge

ne
ra

to
rs

C
ol

um
bi

a
C

O
M

S
W

41
15

St
ud

en
t

St
ud

en
t

O
ca

lm
25

oc
am

lle
x,

5
40

Pr
og

ra
m

m
in

g
de

si
gn

ed
C

ho
ic

e
oc

am
ly

ac
c

La
ng

ua
ge

s
an

d
Tr

an
sl

at
or

s
ET

H
 Z

ur
ic

h
C

om
pi

le
r

Ja
va

Li
X

86
 o

r
Ja

va
30

JL
ex

, C
U

P
2

66
D

es
ig

n
I

si
m

ila
r

St
an

fo
rd

C
S

14
3

C
++

, J
av

a
C

O
O

L
M

IP
S

30
Le

xe
r a

nd
1-

2
50

C
om

pi
le

rs
pa

rs
er

ge
ne

ra
to

rs
B

er
ke

le
y

C
S

16
4

C
O

O
L

M
IP

S
Ja

va
30

JL
ex

, C
U

P
1-

2
40

Pr
og

ra
m

m
in

g
La

ng
ua

ge
s

an
d

C
om

pi
le

rs
O

xf
or

d
C

om
pi

le
r

O
be

ro
n-

lik
e

K
ei

ko
/A

R
M

O
ca

lm
15

oc
am

lle
x,

N
/A

N
/A

oc
am

ly
ac

c

107

Chronological Advancement in Compiler Design: A Review

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

6 Conclusion

In this paper, we conclude that compiler is a program that translates a source-code writ-
ten in programming-language (like C or Pascal) to an object-file. Afterwards a linker
links the object-file with other object-files and libraries to make them executable (like
COM or EXE). Many compilers will perform both the compiling and linking steps in
one operation. A compiler must do much more checking about the legality of the state-
ments, make calls to functions, import from libraries, and manage variables of differ-
ent scopes and so on. Today, compiler design is a vast field of research. Every
programming language need different compiler to run a program. So, we need generic
compiler to make programmer’s work easy. The current paper gives a prerequisite
environment for the construction and design of an efficient generic compiler.

References

1. Takashi Hirooka et al. “Automatic Data Distribution Method Using First Touch Control For
Distributed Shared Memory Multiprocessor”, pp. 147–161, Springer 2003.

2. Manuel Arenaz et al. “A Compiler Framework to Detect Parallelism in Irregular Code”, pp.
306–320, Springer 2003.

3. Mirko Viroli “Effective and efficient compilation of run-time generics in Java”, Electronic
Notes in Theoretical Computer Science, vol. 2, pp. 95–116, 2005.

4. Son, Yunsik, Seman Oh, and Yangsun Lee, “A Reversing Technique for Symbol Table
Verification on Compiler Constructions” 2014.

5. Budiselic, I., D. Skvorc, and S. Srbljic “Designing the programming assignment for a uni-
versity compiler design course”, 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), IEEE, 2014.

6. Wu, Chengyong, et al. “An overview of the open research compiler”, Languages and
Compilers for High Performance Computing Springer Berlin Heidelberg, pp. 17–31, 2005.

7. Mallozzi, John S. “Thoughts on and tools for teaching compiler design”, Journal of
Computing Sciences in Colleges , vol. 21.2, pp. 177–184, Springer 2005

8. Djukic, Miodrag, et al. “An Approach to Instruction Set Compiled Simulator Development
Based on a Target Processor C Compiler Back-End Design”, First IEEE Eastern European
Conference, IEEE, 2009.

9. Youn, Jonghee M., et al. “Two versions of architectures for dynamic implied addressing
mode“, Journal of Systems Architecture, vol. 8, pp. 368–383, 2010.Leupers, Rainer.
“Compiler design issues for embedded processors”, Design & Test of Computers, vol. 4, pp
51–58, IEEE, 2002.

10. Lee, Hakjin, Hyunsang Youn, and Seunghwa Lee, “Automatic detection of design pattern for
reverse engineering”, 5th ACIS International Conference on Software Engineering
Research, Management & Applications, IEEE, 2007.

11. Ivan Klimek, Marián Keltika and František Jakab, “Reverse Engineering as an Education
Tool in Computer Science”, 9th IEEE International Conference on Emerging eLearning
Technologies and Applications, pp. 123–126, IEEE2007.

12. Cifuentes, Cristina, and Anne Fitzgerald. “The legal status of reverse engineering of com-
puter software”, vol. 2, pp. 337–351, Springer, 2000.

13. Kim Ann Zimmerman June 04, 2012 ,“History of computing”, Retrieval 21st May 2015,
http://www.livescience.com/20718-computer-history.html.

108

Amit Verma, Nikita Bakshi

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

14. Jeremy Meyers “A Brief History Of The Computers(B.C.–1993 A.D)”, Retrieval 20 May
2015, http://www.jeremymeyers.com/comp.

15. Mary Bellis “History of Computers” Retrieval 15th May 2015, http://inventors.about.com/
library/blcoindex.htm.

16. Scribd, Feb24,2012 “Computer History Table”, Retrival 10th May 2015, http://www.scribd.
com/doc/82649888/Computer-History-Table#scribd.

17. Vangie Beal “Compiler”, Retrieval 22th May 2015, http://www.webopedia.com/TERM/C/
compiler.html

18. Christopher B. Browne’s “Compiler Construction Tools”, Retrieval 22th May 2015, http://
linuxfinances.info/info/compilingtools.html

109

Chronological Advancement in Compiler Design: A Review

Research in Computing Science 103 (2015)

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

